Metabolic outcomes of weight restoration treatment for anorexia nervosa

Youngjung Kim, M.D., Ph.D. 1, Thomas Hildebrandt, Psy.D. 1, and Laurel E. S. Mayer, M.D. 2

1Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
2Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY 10032, USA

Abstract

Recent advances in genomics highlighted a possible metabolic axis for anorexia nervosa (AN) (1-3). Indeed, following treatment with weight gain to a normal body mass index (BMI), the weight-restored women with AN (WR-AN) develop abnormalities such as central adiposity. This study was aimed to assess the spectrum of metabolic dysfunction in WR-AN as a model of weight gain after sustained starvation.

Study design

A single-arm prospective trial with inpatient weight restoration was conducted in adult women with AN (N=26). Underweight patients with AN were admitted to the hospital and received treatment with our established refeeding protocol. The endpoint in treatment was the successful attainment of 90% ideal body weight, or a BMI of at least 19.5 kg/m². Controls were healthy adult women (HC) without eating disorders who were matched to the WR-AN group by age, sex, and endpoint BMI (N=10). Primary outcomes were post-treatment parameters of metabolism including: the metabolic syndrome (MetS) criteria as defined by the NCEP-ATP III, the single most robust biomarker of cardiovascular disease risk through the non-HDL cholesterol, and a panel of inflammatory and endocrine biomarkers associated with impaired metabolic health.

Results

None of the participants met full criteria for MetS, but the WR-AN group had a significantly higher likelihood of meeting at least one MetS criteria compared to matched HC women (RR=2.8, 95% CI[1.2, 7.5], Fisher’s p<0.017). Compared to HC, WR-AN had elevated visceral adiposity (p=0.004, Hedges’ g=0.943), differential glucose metabolism (p=0.008, Hedges’ g=1.230), and elevated non-HDL cholesterol (p=0.0004, Hedges’ g=1.419). In addition, WR-AN demonstrated a significant reduction in a subset of metabolism-related biomarkers including free fatty acids (FFA, p=0.015, Hedges’ g=1.167), thyroid-stimulating hormone (TSH, p=0.014, Hedges’ g=0.961), and estradiol (E2, p=0.00009, Hedges’ g=1.158).

Discussion

In this cohort of young normal weight women, these results highlight the existence of substantial metabolic differences between healthy subjects and patients with AN who were recently weight-restored after a sustained period of starvation. The metabolic dysfunction that persists despite weight normalization suggests a need for further investigation into the metabolic axis of AN as a potential mechanism of illness perpetuation in AN, which could enhance our understanding of weight regulatory pathways.

Study design

26 underweight women with AN studied before weight gain (BMI range 13.0 to 18.5 kg/m²)

AN-WR

10 healthy control women matched to WR patients for age, BMI and gender

Inpatient admission to NYS Psychiatric Institute/Columbia General Clinical Research Unit (CGRU) with treatment goal of weight restoration to at least 90% ideal body weight (BMI 19.5 kg/m²)

Participants

• Body composition analysis with whole-body MRI
• Fasting plasma analysis: RIA, ELISA
• 3-hour oral glucose tolerance testing (OGTT) with 75 g liquid glucose bolus

NCEP-ATP III criteria for metabolic syndrome (4)

Presence of any 3 of the 5 criteria:
• Abdominal obesity: WC > 88 cm for women (35 inches)
• Hyperglycemia: Impaired fasting glucose, ≥ 100 mg/dl, or DM Rx
• Dyslipidemia: Low HDL-c, < 50 mg/dl in women, or on HLD Rx
• Dyslipidemia: High triglycerides, ≥ 150 mg/dl, or on HLD Rx
• HTN: SBP ≥ 130 mm Hg, DBP ≥ 85 mm Hg, or on HTN Rx

Non-HDL-cholesterol – single most robust biomarker of MetS (5)

Hormones and inflammatory markers

Clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>AN</th>
<th>WR</th>
<th>HC</th>
<th>P AN vs. WR</th>
<th>P AN vs. HC</th>
<th>P WR vs. HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>26</td>
<td>24</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>29.2±6.2</td>
<td>29.1±6.8</td>
<td>26.3±6.8</td>
<td>0.860</td>
<td>0.791</td>
<td></td>
</tr>
<tr>
<td>Height, m</td>
<td>1.6±0.1</td>
<td>1.6±0.1</td>
<td>1.6±0.1</td>
<td>0.611</td>
<td>0.432</td>
<td></td>
</tr>
<tr>
<td>Body weight, kg</td>
<td>42.5±5.3</td>
<td>43.7±4.7</td>
<td>50.4±4.7</td>
<td><0.001*</td>
<td><0.001*</td>
<td>0.354</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>18.8±1.6</td>
<td>20.1±0.5</td>
<td>20.1±0.7</td>
<td><0.001*</td>
<td><0.001*</td>
<td>0.827</td>
</tr>
<tr>
<td>Resting energy, kcal/24h</td>
<td>38</td>
<td>48</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertensive, %</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WR-AN and HC had comparable age, weight, height, and BMI.

Values presented as means ± SD. Statistical comparisons with paired (AN vs. WR) or unpaired (AN vs. HC, WR vs. HC) methods, bold are signficant p-values. Effect sizes denoted with a superscript, using the absolute value of Hedges’ g effect size (g) as *: large or g > 0.8. Body mass index, BMI.

WR-AN had markedly elevated fasting levels of total, high-, and low-density lipoprotein cholesterol, but comparable triglycerides. Non-HDL-cholesterol was significantly elevated in WR-AN.

In both WR-AN and HC groups, no single individual met full criteria for metabolic syndrome. However, the risk of meeting at least 1 MetS criterion was elevated by 2.6 fold in WR-AN vs. HC (RR=2.6, 95% CI[1.2, 7.5], p<0.017), and the average number of MetS abnormalities is significantly elevated in WR-AN vs. HC (p<0.017).

References

Metabolic syndrome-associated biomarkers

Inflammation

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>WR</th>
<th>WR-AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(INF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(TNF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(IL-6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sex hormones

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>WR</th>
<th>WR-AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(estradiol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(testosterone)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other hormones and biomarkers

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>WR</th>
<th>WR-AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(TSH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(T4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inflammatory markers were not elevated in WR-AN. Sex hormones were significantly lower in WR-AN compared to HC. Several other metabolic syndrome-associated biomarkers were altered in WR-AN, including TSH, FFA, and adiponectin.

Discussion

Conclusions. Shortly after weight restoration treatment, women with AN have several metabolic abnormalities vs. healthy control women of comparable age and BMI.

Novelty. No previous study has comprehensively examined metabolic syndrome features in WR-AN compared to HC, and even though weight-normalization is assumed to bring about normalization of laboratory abnormalities, our study demonstrates that there are still numerous abnormalities in WR-AN.

Limitations. The assessment of the AN cohort for the full MetS status was limited by the lack of body composition measurements for the underweight patients.

Clinical implications and remaining questions.

• Do abnormalities in metabolic parameters in WR-AN correspond to psychological symptom recovery and/or future risk of cardiovascular disease?
• Lipid metabolism parameters show increase in both HDL and LDL cholesterol. Together with decreased FFA, this could highlight an altered lipid flux in WR-AN.
• The true interaction between metabolism and eating behaviors is likely to be much more complex, but it is conceivable that altered glucose and lipid fluctuations may confer differential risk of perpetuating maladaptive eating patterns that would contribute to subsequent weight relapse.
• Future studies with longitudinal assessments of metabolism and eating disorder symptom recovery may enhance our understanding of weight regulation.

Acknowledgements

We thank the patients and staff of the General Clinical Research Unit at the NYSPI at Columbia University. This research was supported by R01 DK-086633 and K23 DK-07249 awarded to LEM from the National Institute of Diabetes and Digestive and Kidney Diseases. This study was additionally supported by the winning Institute Clinical and Translational Science Award UL1 RR024987 from the National Center for Resource Development and the National Institutes of Health. YK was supported by the Sara and Arnold P. Federation Award at the Columbia University College of Physicians and Surgeons, Leon Levy Foundation and Columbia University Neuroscience, and the Physicians’ Committee for Responsible Medicine Training Program at the John Honig School of Medicine at Mount Sinai.